

L'allergie à l'Armoise : Diagnostic biologique : IgE spécifiques /réactions croisées

F.Bienvenu
Praticien Hospitalier
Laboratoire d'Immunologie
CHU de LYON

XVI èmes Journées d'étude du RNSA 25 et 26 novembre 2011.

L'allergie au pollen d'Armoise

(Artemisia vulgaris)

- L'allergie au pollen d'Armoise touche 10-14% des patients polliniques en Europe
- Principale cause de réactions allergiques, fin été/automne, avec l'Ambroisie (Ambrosia artemisifolia)
- Diagnostic différentiel important si une désensibilisation est envisagée

Quels sont les outils pour le diagnostic biologique de l'allergie à l'armoise?

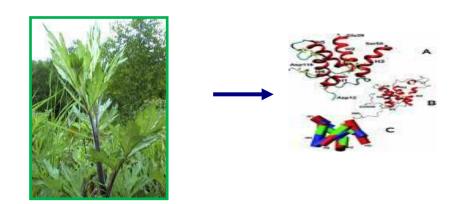
Recherche d'IgE spécifiques avec les extraits allergéniques « classiques »

- Artemisia vulgaris: w6
- Ambrosia artemisifolia: w1
- Mais:

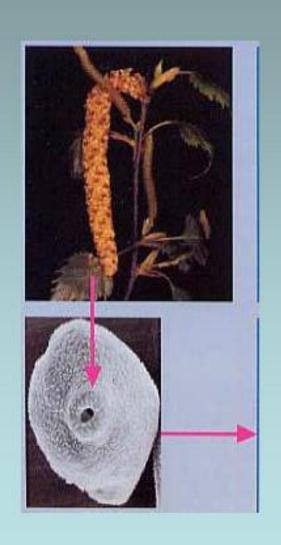
 Réactions croisées au niveau des tests cutanés et biologiques

Une (r)évolution dans le diagnostic biologique de l'allergie

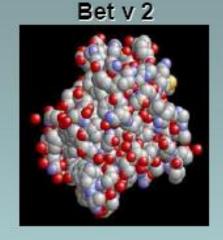
 IgE spécifiques avec extraits allergéniques naturels (w6, w1)


 Manque de spécificité (réactions croisées) UNE EVOLUTION DANS LE

/ DIAGNOSTIC IN VITRO:

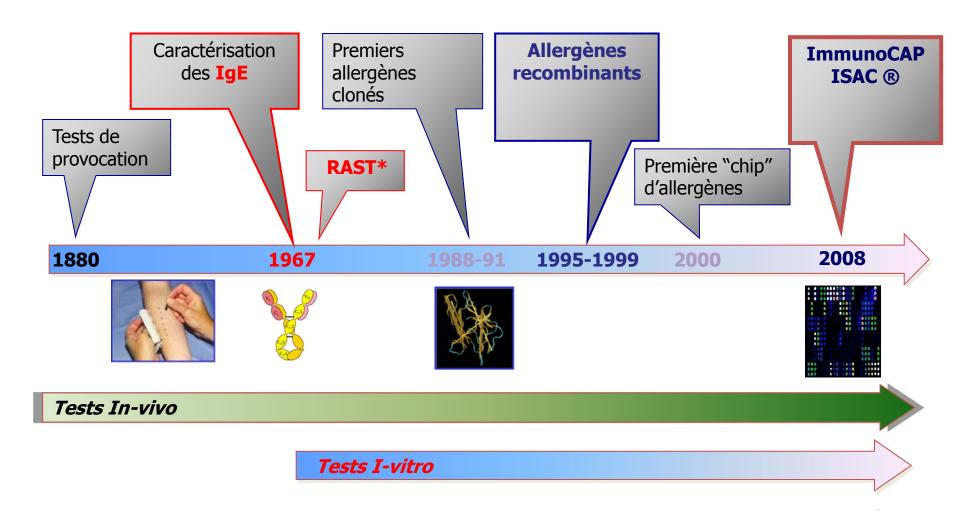

DES EXTRAITS ALLERGENIQUES

AUX


ALLERGENES MOLECULAIRES

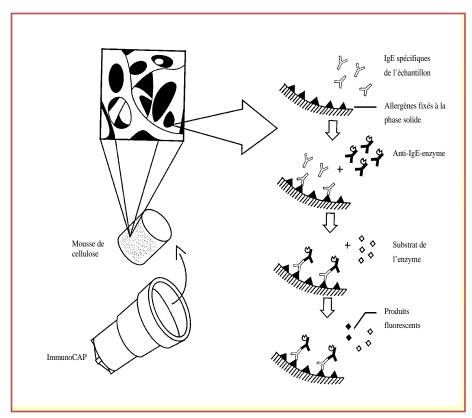
D'une vision macromoléculaire vers une <u>vision</u> moléculaire des allergènes

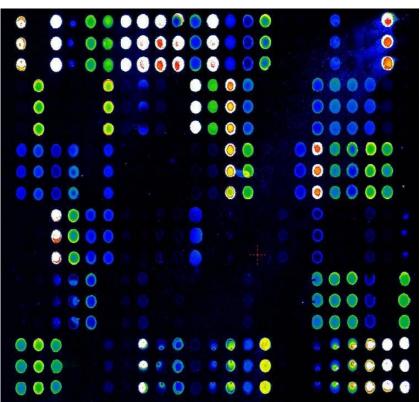
Bet v 1


Définition de familles biochimiques d'allergènes

Bet v 1, Gajhede 1995

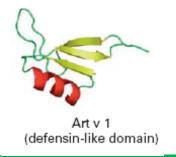
Une évolution liée aux limites des extraits allergéniques naturels


- Composition variable, hétérogène (mélange de protéines allergéniques et non allergéniques) non standardisée
- Variabilité:
 - en fonction des sources : obtenus à partir de sources allergéniques complexes : grains de pollens, squames et phanères d'animaux, cultures d'acariens ou de blattes.....
 - des procédés de préparation : extraction aqueuse, dégradation des allergènes fragiles lors de la préparation (chauffage)....
 - des procédés de purification et de stockage utilisés (contaminations)


L'évolution des outils....

"Component-resolved diagnosis"

Les techniques de dosage des allergènes moléculaires : Test unitaire/ Biopuce multiallergénique



Tests multiallergéniques : permettent de définir précisément au niveau moléculaire le profil de sensibilisation d'un individu

Les allergènes de l'Armoise

6 allergènes moléculaires ont été décrits pour l'Armoise :

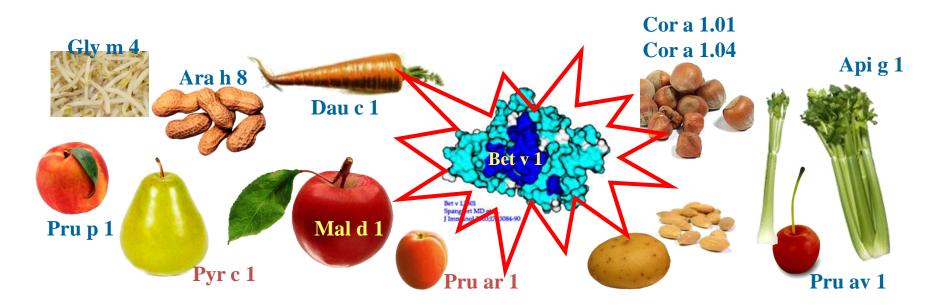
Species	Allergen	IgE reactivity %	Description/biologic function	MW (SDS-PAGE) kDa
A. vulgaris (mugwort)	Art v 1 Art v 2 Art v 3 Art v 4 Art v 5 Art v 6	95 33 36–40 36 10–15 20–26	PR-12 protein, defensin-like N-terminal 30 aa sequence N-terminal 37 aa sequence, nsLTP family profilin polcalcin, Bet v 4 homologue Pectate lyase family, Amb a 1 homologue	24–28 35 9.7 14 9 42

polcalcin = Pollen-specific 2-EF-hand calcium-binding allergen; aa = amino acid; MW = molecular weight.

En pratique : pour l'allergie au pollen d'armoise

2 allergènes moléculaires commercialisés :
 nArt v 1 et nArt v 3

- 80-95% des patients allergiques à l'armoise sont sensibilisés à Art v1 (allergène « majeur »)
- Art v 3 : allergène majeur en région méditerranéenne (35-85% des patients espagnols allergiques à l'armoise sont sensibilisés à Art v3)


Réactions croisées Pollen d'Armoise / Aliments

« Syndromes » pollens-aliments

Syndrome "Pomme-Bouleau"

- Base moléculaire bien décrite : PR-10, Bet v 1
- Instable à la chaleur, aliment cuit toléré en général.
- Associé à des symptômes locaux (syndrome oral)
- Réactions allergiques aux fruits et légumes au Nord de l'Europe.

Réactions croisées Pollen d'Armoise / Aliments

Le syndrome « Céleri-Armoise-Epices »

- Sensibilisation à l'armoise
- Allergies alimentaires : Apiacées

f31

f86

f276

Coriandre f317

Cumin f265

Bases moléculaires de ces réactions croisées restent incertaines/méconnues :

- PR-10 (Dau c 1, Api g 1)/ Bouleau ?
- Autres?

f85 **rApi g 1**

Autres familles botaniques impliquées dans les « variantes » du « syndrome » Céleri-Armoise-Epices

« Description » de syndromes « Céleri-Armoise-Epices-Mangue », « Céleri-Armoise-Bouleau » ...

- Solanacées (Paprika): f218

– Pipéracées (Poivre): f280

Liliacées (Oignon, Ail) : f47

- Anacardiacées (Mangue): f91

Armoise et Mangue

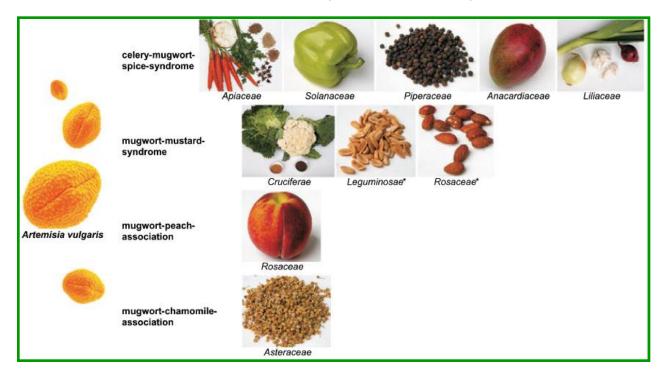
- Réseau allergovigilance : 10 cas d'anaphylaxie sévère à la mangue
 - chez patients sensibilisés au pollen d'armoise (8) ou de bouleau (2).
 - 6 patients ont une allergie alimentaire aux apiacées
- l'allergie à la mangue : rare (0,2%)
- Mais: disproportion entre sa prévalence générale et la prévalence dans le cadre des anaphylaxies sévères (1,2%)

Et aussi : les Rosacées

- Armoise Pêche :
 - Population espagnole
 - 24 patients allergiques à l'armoise/ réactions à la pêche :
 - IgE spécifiques nArt v 3 chez 20 patients et rPru p 3 chez 11 patients
 - − → Hypothèse : Réaction croisée via les LTP
 - nArt v 3 : sensibilisant primaire?

Amino acid sequence identity (%)

	Pru p 3	Mal d 3	Sin a 3	Art v 3	Tri a 14	Par j 1	Ole e 7
Pru p 3	-	81	54	46	45	29	19
Mal d 3		-	51	46	45	27	24
Sin a 3			_	44	46	30	29
Art v 3				-	43	32	29
Tri a 14					-	31	24
Par j 1						_	19
01e e 7							_


Lombardero et al. 2004 Clin Exp allergy

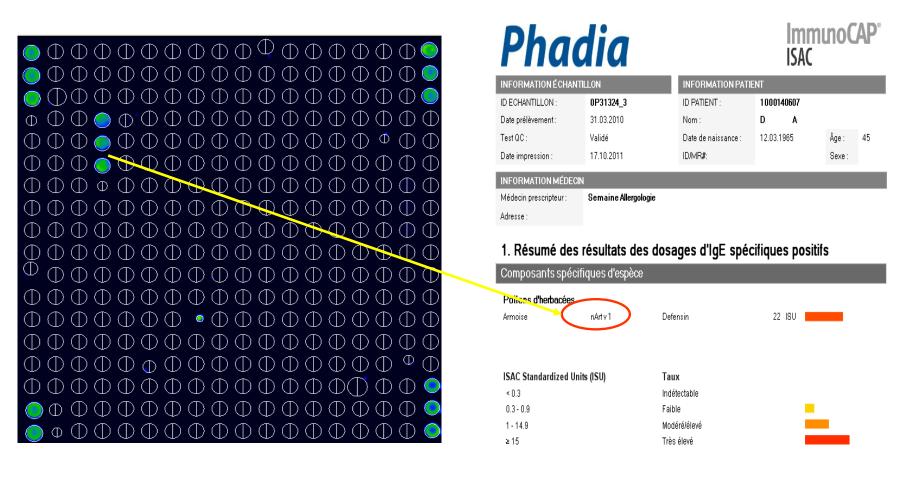
Et encore....

- Armoise-Crucifères-Moutarde (LTP?)
- Armoise-Melon (profiline? PR-1?)

Armoise-Astéracées (camomille)

Explication moléculaire à ces réactions croisées?

- Aucune certitude, de nombreuses questions
- à la différence de Bouleau/Rosacées (PR-10)


• Pour réfléchir.....

Cas clinique : Allergie alimentaire au Céleri

- Augusto D S, 45 ans
- Rhino-conjonctivite saisonnière à Ambroisie/Armoise
- Choc anaphylactique (grade III) après ingestion de célerirave rémoulade. Réaction avec persil, coriandre.
- Adrénaline
- Tests cutanés positifs pour :
 - Armoise
 - Ambroisie
 - Céleri
 - Persil

IgE totales	115
Armoise commune (w6)	24.60
nArt v3	<0.10
rBet v 1	<0.10
Céleri	0.34
rApi g 1	<0.10
Pistache	0.31
Noisette	<0.10
rCor a 8	<0.10
Amande	<0.10
TRYPTASE	1.9

Biopuce ISAC : 103 allergènes moléculaires

LTP du céleri (Api g 2) vérifiée par K. Hoffmann : négative

Conclusion-Réflexion

- Relations étroites entre les pollens et l'allergie alimentaire (en augmentation et parfois grave)
- Intérêt du raisonnement par familles moléculaires pour expliquer réactions croisées
- Beaucoup d'allergènes restent à découvrir

Mise en commun des compétences par le biais des réseaux

	Allergènes spécifiques d'espèce		Panallergènes				
	Défensine	Pectate-	LTP	Profiline	Polcalcine	PR-10	
	PR-12	lyase					
Armoise	Art v 1	Art v 6	Art v 3	Art v			
(w6)	(glycosylé)						
Ambroisie	Amb a 4*	nAmb a 1	Amb a 6	Amb a 8	Amb a 9	5	
(w1)							
Autres :	?	nCup a 1	Pru p 3	Pru p 4	Bet v 4	Bet v 1	
	Gly m 2	nCry j 1	(Api g 2)	(Api g 4)	(Ole e 3)	Api g 1	
	Art v 1		Pla a 3	(Dau c 4)	Phl p 7	Cor a 1	
			Ole e 7	(Cuc m 2)	••••	Pru p 1	
			Par j ½	Bet v 2		Ara h 8	
			Ara h9	Phl p 12		Act d 8	
	and the second		Cor a 8	(Ara h 5)		Gly m 4	
			Hev b 12	Hev b 8			

^{*} Leonard R, Wopfner N, et al. A new allergen from ragweed (Ambrosia artemisiifolia) with homology to art v 1 from mugwort J. Biol Chem, 2010 27;285(35):27192-200