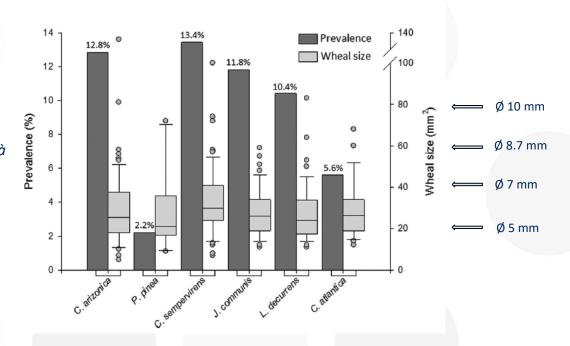

Challenges de la production des extraits de pollens de Cupressacées

Virginie Leduc, ALK

JES - RNSA, Bordeaux, 22-23 novembre 2018

Phylogénie Ordre des Pinales


Prévalence de la sensibilisation aux pollens de conifères / région à forte exposition aux cyprès (Madrid)

Dominguez-Ortega, Allergy Rhinol 2016

499 patients testés SPT

70 SPT positif à au moins un pollen de :

- Cupressus arizonica
- Pinus picea
- Cupressus sempervirens
- Juniperus communis
- "Libocedrus" decurrens (= Calocedrus) = cèdre à encens
- Cedrus atlantica = cèdre de l'Atlas

Diversité allergénique des Cupressacées

Pectate lyase - groupe 1

- 45 kDa
- Cup s 1, Cup a 1, Jun a 1

Cry j 1

- Impliqué dans la dégradation de la pectine
- Rôle dans l'élongation du tube pollinique
- Polygalacturonase groupe 2

- 45 kDa
- Cup s 2, Cup a 2, Jun a 2

Cry j 2

- Impliqué dans la dégradation de la pectine
- Rôle dans l'élongation du tube pollinique
- Thaumatin-like protein groupe 3
- 28 kDa
- Cup s 3, Cup a 3, Jun a 3

Cry j 3

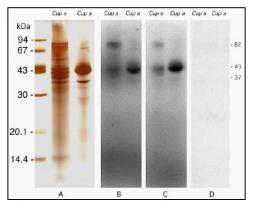
Cry j 4

- Pathogenesis –related protein (PR-5)
- Réponse anti-fongique
- Polcalcine & profiline groupes 4 et 8 = polcalcine et profiline Cup a 4, Cup s 8
- Bd 14kDa = snakin = famille de Pru p 7 (peamaclein) = peptide anti-microbien
- Cryptomeria japonica (genomic): IFR, Chitinase, LTP, Aspartic protease...

Homologies de sequences des principaux allergènes

Pollen	Allergène Pectate lyase		% Identité avec Cup s 1	Allergène polygalac- turonase	Séquence UNIPROT	% Identité avec Cup a 2	Allergène thaumatin- like protein	Séquence UNIPROT	% Identité avec
Nbre Acides Aminés	367 aa			384 aa			198 aa		
Cupressus sempervirens	Cup s 1	Q9M4S5	100%	Cup s 2	absent des b	ases de données	Cup s 3	Q69CS2	100%
Cupressus sempervirens	Cup s 1	Q9M4S2	98%				Cup s 3	Q69CS3	98%
Cupressus arizonica	Cup a 1	Q93XL6	94%	Cup a 2	A0T2M4	100%	Cup a 3	Q9FY35	97%
luniperus ashei	Jun a 1	P81294	96%	Jun a 2	Q9FY19	93%	Jun a 3	P81295	96%
Cryptomeria japonica	Cry j 1	P18632	78%	Cry j 2	P42212	71%	Cry j 3	A4PBQ1	86%
Ambrosia artemisiifolia	Amb a 1	P27759	40%						
	0% 2C Cup s1 Cup s1 Cup s1 Jun a1 Cry j1 Amb a 1	9% 40% 60	% 80% 100%	O% 2 Cup s 2 Jun a 2 Cry j 2	0% 40% 600	8 80% 100%	Cups3 Cups3 Cups3 Cups3 Cups3	20% 40%	50% 80% 100%

5 ALK Corporate presentation


Standardisation in vivo

Centre: Marseille, Pr. Charpin, 1998

- Etude in vivo constituée du mélange de 2 PRI
 - Cupressus sempervirens
 - Cupressus arizonica
- Trois concentrations testées en SPT
- SM SM/10 SM/100
- Quadruplicate
- Témoin positif "Phosphate de codéine"
- Total de 44 patients testés population généralement sensibilisée aux pollens de cyprès
 - pas de critère quantitatifs d'IgE
 - pas de critère de taille de papule lors du recrutement
- Mesure des diamètres des papules
- Pas de dermographisme témoin négatif = 0
- → 25 patients analysés
- Moyenne géométrique
- Détermination de l'IR = équivaut à la papule papule moyenne du témoin positif (PC) (5,82 mm soit 6 mm)

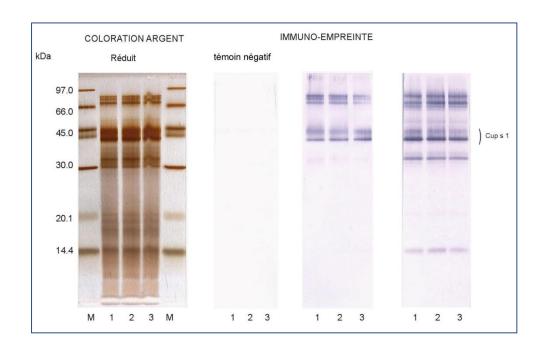
ALLERGIE AU POLLEN DE CYPRES : PREPARATION D'UN EXTRAIT DE RÉFÉRENCE ET STANDARDISATION IN VIVO

V. Leduc (1), D. Charpin (2), C. Aparicio (1), C. Veber (1), L. Guérin (1)

Standardisation in vivo Cupressus sempervirens / arizonica PAPULE (mm) 7,0 6.0 5.0 4.0 3,0 Concentration

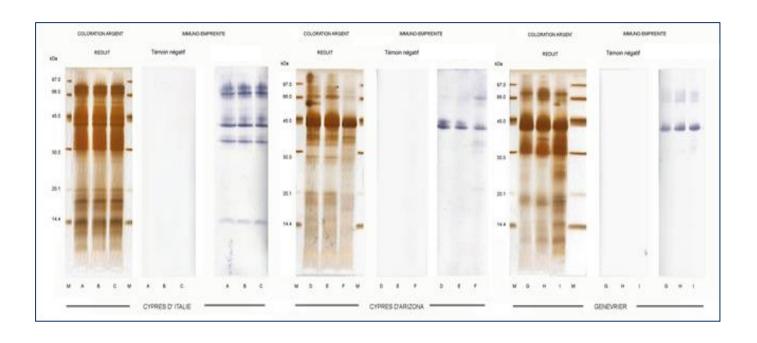
Constitution d'un pool de sérums

4 DV DOOL	- CCEDURA	DDC C		_
	A RV DOOL	ARY DOOL of SERLIM	ARV DOOL of SERLIM - DDS Cumressaces	ARY POOL of SERUM = PPS Cupressaceae


Cupressus sempervirens - Cupressus arizona poller

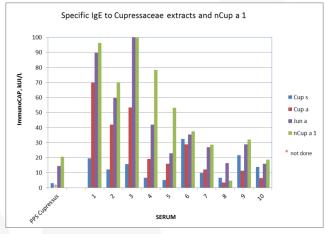
In vivo study

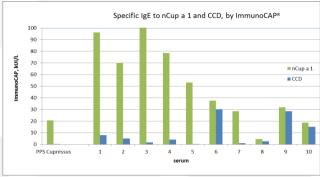
PPS Cupressaceae
kUI/L
3,0
14,4
20,6
0,31



Allergenic profile of *Cupressus sempervirens* pollen extracts.

Allergenic profiles of *Cupressus sempervirens, C. arizonica* and *Juniperus ashei*.





Outils de caractérisation des allergènes

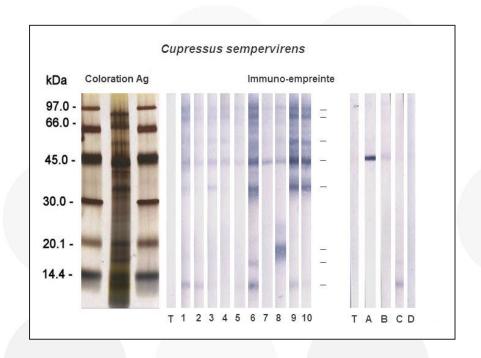
10 serums humains IgE

	ImmunoCAP							
Serum ID	ISAC	t23	t222	t6	t226	o214		
	ISU/L			kUI/L	-/			
	nCup a 1	Cup s	Cup a	Jun a	nCup a 1	CCD		
PPS Cupressus	ND	3,0	ND	14,4	20,6	0,31		
1	92	19,40	69,90	89,70	96,20	7,90		
2	68	12,00	42,00	59,80	70,10	5,00		
3	54	15,60	53,30	101,00	101,00	1,81		
4	28	6,50	19,00	42,00	78,40	4,19		
5	21	5,18	15,90	22,80	53,20	0,24		
6	19	32,50	28,80	35,40	37,50	30,30		
7	12	9,81	12,10	27,00	28,60	1,10		
8	11	6,52	3,35	16,30	4,69	2,70		
9	6	21,70	11,30	28,80	31,90	28,60		
10	6	13,70	6,35	15,80	18,70	15,10		

Profils allergéniques

Cupressus sempervirens

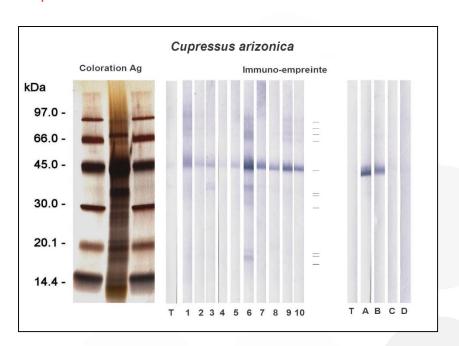
10 sérums humains

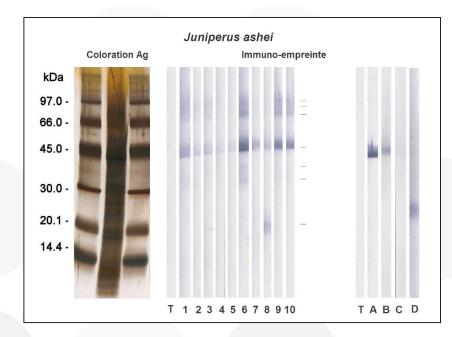

Anticorps spécifiques

A: anti-groupe 1

B: anti-groupe 2

C : anti-profiline


D: anti-Jun a 3



Profils allergéniques

Cupressus arizonica

Juniperus ashei

Impacts des CCD?

Iacovacci, CEA, 2002

nCup a 1 (CCD) comparé à rCup a 1 (no CCD) et à nCup a 1 déglyclosylé

Table 2. IgE reactivity by immunoblotting (OD obtained by densitometric analysis) and direct ELISA (OD490). The sera were tested with the nCup a1, the rCup a1.02 and the nCup a1 deglycosylated (nCup a1 deg)

Sera number	Immunoblotting nCup a1	Immunoblotting rCup a1.02	Immunoblotting nCup a1 deg	ELISA nCup a1	ELISA rCup a1.02	ELISA nCup a1 deg
1	0.45	neg	neg	0.40	0.06	0.06
3	1.39	neg	neg	1.37	0.06	0.06
7	0.75	neg	neg	0.63	0.06	0.07
9	0.50	neg	neg	0.41	0.06	0.06
12	1.03	neg	neg	0.87	0.06	0.05
14	1.22	1.19	1.23	1.50	1.30	1.31
15	0.81	0.90	0.80	0.59	0.50	0.49
16	0.69	0.64	0.77	0.52	0.48	0.48
17	0.42	neg	neg	0.34	0.05	0.05
19	0.53	neg	neg	0.30	0.06	0.06
21	1.29	neg	neg	0.59	0.06	0.06
22	1.17	neg	neg	0.60	0.06	0.06
23	0.43	neg	neg	0.47	0.05	0.06
25	0.47	neg	neg	0.24	0.05	0.06
28	0.78	neg	neg	0.44	0.05	0.06
29	1.33	neg	neg	0.86	0.06	0.05
30	0.63	neg	neg	0.40	0.05	0.06

Basophil histamine release

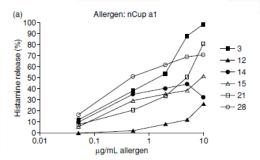
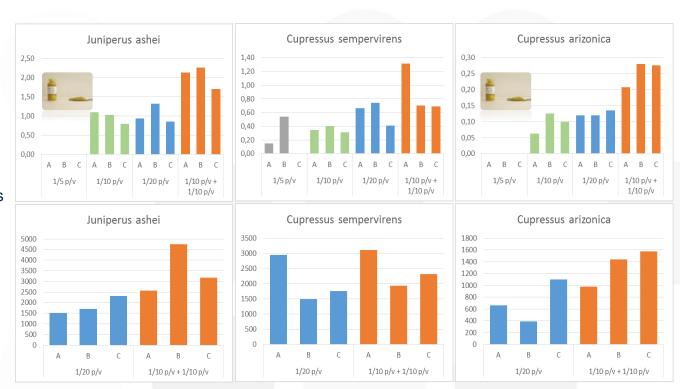


Fig. 4. Basophil histamine release test performed with IgE from sera n. 3 (filled squares), 12 (filled triangles), 14 (filled circles), 15 (open triangles), 21 (open squares) and 28 (open circles). Panels (a) and (b) show the doserelated release curves obtained after stimulation with nCup a1 and with rCup a1.02, respectively. Allergens were used at the concentration of 10, 5, 2, 0.5 and 0.05 μg/mL.

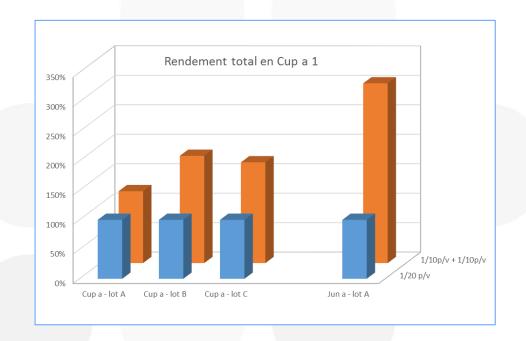
- → IgE anti-CCD jouent un rôle dans la degranulation
- → Absence de pertinence clinique de IgE anti-CCD remise en cause


Production "large scale" des Préparations-mères

Difficulté de production

Extraits visqueux

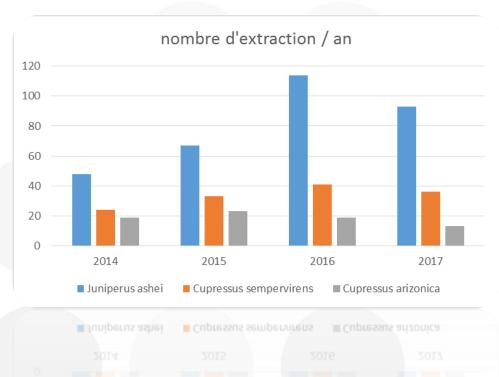
Optimisation des procédés d'extraction


Amélioration des rendements

Amélioration du rendement en Cup a 1

- Dosage de Cup a 1
 - mAb anti Cup a 1
 - Standard interne
 - pAb anti Cup a 1

Besoins annuels en préparations-mères.


Cyprès mix (sempervirens/arizonica) 100 IR/mL Juniperus ashei 300 IR/mL

Quantité de pollen nécessaire en lien avec accroissement des besoins

 \rightarrow

Challenge dans l'approvisonnement des matières premières

Contrôle qualité sur chaque lot de pollen

Les pollens

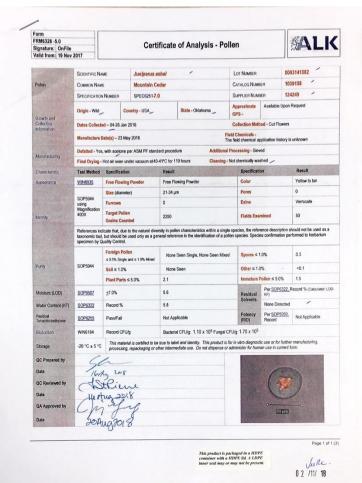
ALK

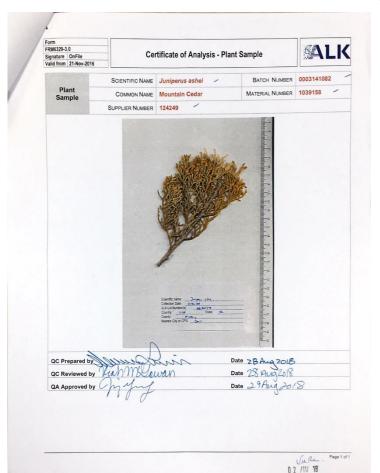
ALK Source materials Traçabilité complète

- Espèces cultivées
- Espèces sauvages
- Coordonnées GPS
- Récolteurs définis / qualifiés
- Identification macroscopique de la plante

ALK France Contrôles à réception

- Identification microscopique des pollens
- Pureté (spores, éléments et pollens étrangers)
- Microbiologie
- Pesticides / métaux lourds
- Vérification de la qualité allergénique du lot (extraction du pollen) - spécifications
 - SDS-PAGE
 - Activité allergénique
 - Teneur protéique
 - Allergène majeur (Bet v 1, Phl p 5, Ole e 1, Amb a 1....)




Betula

Plantago

Fraxinus

Monographie "Pollens pour produits allergènes"

- Pharmacopée Française
- Révisée en 2009
- → PhFR = décrivaient précisément les méthodes d'analyse (essais d'identification et pureté, ...) basées sur les techniques des deux laboratoires Français.

- 2017 jan → Eur Pharmacopeae
- Méthodes ne sont plus décrites
- bcp plus de laboratoires en Europe → méthodes divergent
- Monographie plus générale

Je vous remercie de votre attention ...