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• Grass pollen was studied across five
sites in Australia and France.

• Study utilised satellite-derived green-
ness data to inform grass pollen aerobi-
ology.

• Cross-site timing differences were
found in greenness phenology and pol-
len release.

• Generalised additive models predictive
of grass pollen across the diverse sites.

• Potential of satellite data to augment
short-term pollen forecast models.
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Allergic diseases, including respiratory conditions of allergic rhinitis (hay fever) and asthma, affect up to 500mil-
lion people worldwide. Grass pollen are one major source of aeroallergens globally. Pollen forecast methods are
generally site-based and rely on empirical meteorological relationships and/or the use of labour-intensive pollen
collection traps that are restricted to sparse sampling locations. The spatial and temporal dynamics of the grass
pollen sources themselves, however, have received less attention. Here we utilised a consistent set of MODIS
Technology Sydney, Ultimo, NSW 2007, Australia.
(R. Devadas), alfredo.huete@uts.edu.au (A.R. Huete), d.vicendese@latrobe.edu.au (D. Vicendese), B.Erbas@latrobe.edu.au
dek@waitematadhb.govt.nz (D. Medek), simon.haberle@anu.edu.au (S.G. Haberle), Rewi.Newnham@vuw.ac.nz
n), alison.jaggard@mq.edu.au (A.K. Jaggard), b.campbell2@uq.edu.au (B. Campbell), Pamela.Burton@sswahs.nsw.gov.au
telaris), edwardjn@unimelb.edu.au (E. Newbigin), michel.thibaudon@wanadoo.fr (M. Thibaudon), j36.davies@qut.edu.au

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2018.03.191&domain=pdf
https://doi.org/10.1016/j.scitotenv.2018.03.191
mailto:j36.davies@qut.edu.au
Journal logo
https://doi.org/10.1016/j.scitotenv.2018.03.191
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/scitotenv
jeanp
Texte surligné 



442 R. Devadas et al. / Science of the Total Environment 633 (2018) 441–451
Editor: Scott Sheridan
 satellite measures of grass cover and seasonal greenness (EVI) over five contrasting urban environments, located
inNorthern (France) and SouthernHemispheres (Australia), to evaluate their utility for predicting airborne grass
pollen concentrations. Strongly seasonal and pronounced pollinating periods, synchronous with satellite mea-
sures of grass cover greenness, were found at the higher latitude temperate sites in France (46–50° N. Lat.),
with peak pollen activity lagging peak greenness, on average by 2–3 weeks. In contrast, the Australian sites
(34–38° S. Lat.) displayed pollinating periods that were less synchronous with satellite greenness measures as
peak pollen concentrations lagged peak greenness by as much as 4 to 7 weeks. The Australian sites exhibited
much higher spatial and inter-annual variations compared to the French sites and at the Sydney site, broader
and multiple peaks in both pollen concentrations and greenness data coincided with flowering of more diverse
grasses including subtropical species. Utilising generalised additivemodels (GAMs)we found the satellite green-
ness data of grass cover areas explained 80–90% of airborne grass pollen concentrations across the three French
sites (p b 0.001) and accounted for 34 to 76% of grass pollen variations over the two sites in Australia (p b 0.05).
Our results demonstrate the potential of satellite sensing to augment forecast models of grass pollen aerobiology
as a tool to reduce the health and socioeconomic burden of pollen-sensitive allergic diseases.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Grass pollen are the most widespread allergens globally with ele-
vated levels of airborne grass pollen linked to increases in hospital
emergency department visits and admissions for asthma (Darrow et
al., 2012; Erbas et al., 2015). Climate variability, warming temperatures
and increased CO2 levels have been associated with altered flowering
times (Fitter and Fitter, 2002), extended pollination periods and in-
creased allergen loads within pollen, thereby increasing human expo-
sure to aeroallergens (Beggs, 2016). The frequency of high pollen
concentration days and thunderstorm asthma events are projected to
intensify with climate change, further escalating the substantial public
health burden of allergic respiratory diseases (Beggs, 2016; Dabrera et
al., 2013; Davies et al., 2015).

Management of pollen allergen exposure is an increasingly impor-
tant public health concern for reducing the health and socio-economic
burden of allergic diseases (Beggs et al., 2015; Guillam et al., 2010).
Long-term airborne pollen records have been integral towards measur-
ing population exposures in Europe, USA, and other countries, and also
provide valuable indicators of current and future trends in allergenic
pollen production (Ziello et al., 2012; Ziska et al., 2011). However, con-
ventionalmethods for sampling airborne pollen utilise volumetric spore
collection traps that are labour-intensive, expensive to maintain, and
confined to a restrictive range of sampling sites.

Short-term seasonal pollen forecast models have been employed to
assist in management of symptoms and disease. These forecast models
aim to predict the start of a local pollen season and days of high airborne
pollen concentrations utilising meteorological variables (e.g., tempera-
ture, relative humidity, wind and precipitation), and may include em-
pirical relationships with airborne pollen concentrations (Laaidi, 2001;
Ong et al., 1995; Smith and Emberlin, 2006), as well as local expert
knowledge and patients' symptom reports. However, forecast models
based on pollen concentration data from one site are not likely to be
suitable in other environments (Green et al., 2004). Other observa-
tion-based forecasting approaches utilise time series modelling of
inter-annual variations in pollen concentrations (Aznarte et al., 2007),
meteorological data-driven machine learning and computational intel-
ligence (Voukantsis et al., 2010), and process-based models of chilling
requirements (Linkosalo et al., 2008) and photoperiod (García-Mozo
et al., 2009).

An important shortcoming in pollen forecasting methods is their
lack of utilisation of available ecological information on current land
cover conditions, plant species composition (McInnes et al., 2017),
and the timing of key plant phenophase periods, such as budburst and
flowering. Such data are vital to understand the ecological and climate
drivers of pollen aerobiology and may aid the prediction of short-term
and future trends of pollen aerobiology. For example, modifications in
land cover and land use activities, such as livestock grazing practices,
can alter grassland extent, species composition, and flowering phenol-
ogy, thereby impacting pollen aerobiology in complex ways (Grimm
et al., 2008; Rogers et al., 2006; Skjøth et al., 2013).

In the past decade there has been an increase in the availability of
satellite remote sensing data of ecologically relevant landscape vari-
ables that can augment the restrictive coverage afforded by in situ pol-
len networks. Satellite data provide timely and repetitive updates of
land cover conditions and vegetation phenology status at high spatial
resolution (Justice et al., 1998; Zhang et al., 2006). Spatial and temporal
analysis using satellite greenness or vegetation indices (VI), have been
shown to provide accurate estimates of the onset of birch flowering in
Norway (Karlsen et al., 2009), grass and birch flowering in the UK
(Khwarahm et al., 2017), the location of grass pollen sources in urban
areas in Denmark (Skjøth et al., 2013) and juniper pollen sources in
the US (Luvall et al., 2011).

In this study, we investigated the utility of globally consistent satel-
lite remote sensing measures of grass cover and extent and their dy-
namic phenological growing periods, to inform temporal changes of
airborne grass pollen in five contrasting urban environments in the
Northern (France) and Southern Hemispheres (Australia). Our aim
was to assess the potential of satellite data to augment pollen forecast
models andhelp answer complexquestions of changing grass pollen ex-
posure and management of current and future public health threats.
2. Methods

2.1. Site description

Three ‘temperate, warm summer, without a dry season’ climate sites
(Köppen-Geiger Climate Class – Cfb, Peel et al., 2007) in France and two
in Australia,with analogous periods of pollen data, were studied (Fig. 1).
The sites in France were at higher latitudes (46–50°N) relative to the
Australian sites (34–38°S). The two Australian sites and one site in
France (Amiens) were coastal and at low elevation (b75 m above sea
level), while the other two sites in France were inland with elevations
above 175 m.

The two Australian sites had bi-modal seasonal rainfall patterns
in contrast to a single summer rainfall season in the three French
sites (Fig. 2). Mean annual rainfall (MAR) varied from 634 to
1348 mm and mean annual temperatures (MAT) varied from 10.4
to 17.6 °C. Sydney and Lyon sites had similar and high rainfall
(~1300 mm/year), while Melbourne, Montluçon and Amiens had
similar and low rainfall (~700 mm/year). All sites had spring sea-
sonal periods of increasing temperatures and vapour pressure defi-
cits (VPD). Wind speeds were high across Austral spring and
summer periods in the Australia sites and were high across winter
and spring periods in the sites in France (Fig. 2).



Fig. 1. Two study site locations in Australia (left) and three sites in France (right). Amiens (2.30°E, 49.90°N), Montluçon (2.61°E, 46.34°N), Lyon (4.82°E, 45.72°N), Sydney (150.79°E,
34.07°S), Melbourne (144.96°E, 37.80°S).
Images: Google Earth.
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2.2. Pollen data

Daily atmospheric grass pollen concentration data were obtained
for the five sites. The pollen data for the 3 sites in France and Mel-
bourne site in Australia were available for an 11-year period from
2002 through to end of 2012, while five years of pollen data were
available over the Sydney site in Australia, from 2008 through to
end of 2012. Aerobiological monitoring of pollen was conducted
with volumetric Burkard spore traps/samplers (Burkard Scientific
Ltd, Uxbridge, UK) according to methods described in detail previ-
ously (Haberle et al., 2014). Pollen was collected and counted at
the French sites according to European standard protocols
(European Committee for Standardisation, 2015).
Fig. 2. Long term average monthly maximum, minimum andmean annual temperature (MAT)
were computed from temperature and relative humidity observations at 3 pm (Allen et al., 199
coastal, Australian sites. Mean monthly MODIS EVI data were computed over grass-containing
season from September to November in Australia and March to May in France. Australia clim
data) http://www.bom.gov.au/climate/averages/maps.shtml; and French sites compiled from
software/climwat-for-cropwat/en/.
2.3. Land cover data

WeusedMODerate-resolution Imaging Spectroradiometer (MODIS)
Land Cover Type 1 (MCD12Q1)-International Geosphere-Biosphere
Programme (IGBP) land cover classification data (Friedl et al., 2010)
with a spatial resolution of 500m for the assessment of pollen emission
sources. Data were downloaded from the NASA Land Processes Distrib-
uted Active Archive Centre (LP DAAC, http://e4ftl01.cr.usgs.gov/). Land
cover information was derived for each year of the study to encompass
changes in land cover resulting from urbanisation and shifting land
uses. The dataset was re-projected from sinusoidal to Universal
Transverse Mercator (UTM) projection to make actual area estimates
(Fig. 3a).
, andmean annual rainfall (MAR) for the 5 study sites. Vapour Pressure Deficit (VPD) data
8). Wind speeds were recorded at 3 pm for the French sites, and at 9 am and 3 pm for the
land cover classes within the 100 km radius study area. Shaded areas indicate the spring
ate data compiled from Bureau of Meteorology (1971–2014 and 1970–2010 for wind
U.N. FAO Climate Watch (1971–2000), http://www.fao.org/land-water/databases-and-

http://e4ftl01.cr.usgs.gov/
http://www.bom.gov.au/climate/averages/maps.shtml
http://www.fao.org/land-water/databases-and-software/climwat-for-cropwat/en
http://www.fao.org/land-water/databases-and-software/climwat-for-cropwat/en


a)

N

Fig. 3. Land cover for the five urban study areas for the year 2011. (a) MODIS-derived International Geosphere-Biosphere Programme (IGBP) land cover classification with concentric
annuli of 0–10 km, 11–25 km, 26–50 km, 51–75 km, and 76–100 km radial distance from pollen sampling source, (b) IGBP land cover class proportions within each of the annuli (note
that 0–10 km circle and 11–25 km annulus are not to scale), (c) relative proportions of the 4 composite land cover (LC) classes (urban; grassland & cropland; grass-woody vegetation;
forest and others) within each annuli, and (d) actual area of the 4 composite land cover classes in (c) within each annuli.
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Regional land cover type data were extracted over a 100 km
radius area from the pollen sampler at each of the 5 urban sites.
We used a regional (b100 km) definition for pollen transport as
presented in Sofiev et al. (2013). These areas were subdivided
into (1) sampling circles with radii of 10, 25, 50, 75 and 100 km
from the pollen sampler, and (2) sampling annuli at 0–10, 11–
25, 26–50, 51–75 and 76–100 km from the pollen sampler
(Fig. 3a).
To quantify grass cover across the different IGBP land cover classes,
four composite classes were created that included: (1) urban [urban
and built-up]; (2) grassland & cropland [grasslands, croplands, and
cropland/natural vegetation mosaic]; (3) grass-woody vegetation [sa-
vannas, woody savannas, and open shrublands]; and (4) forests and
others [all forest and other non-grass classes] (Fig. 3c, d). The first
three of these composite classes consisted of seven of the IGBP land
cover classes that included significant presence of grass cover, and
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were used for further analysis. We included the ‘Urban and built-up’
class in our grass-containing composite class because urban structures
such as parks, golf courses, residential lawns, and other recreational
areas, all provide significant ‘local sources’ of grasses in very close prox-
imity to the pollen traps. The fourth composite class (forests and others)
comprised land cover classeswithout significant presence of grass cover
andweremasked and not considered in further analysis. Thefinal result
of this analysis was a set of 500 m resolution images, derived consis-
tently over all 5 study areas, showing the spatial distribution of potential
grass pollen source areas.

2.4. Satellite greenness data

Spatial and temporal changes in grass growth at all sites were deter-
mined from the satellite-derived Enhanced Vegetation Index (EVI)
product from Terra MODIS sensor (Huete et al., 2002). The EVI was
used as a spectral surrogate of vegetation chlorophyll activity and en-
abled continuous and long-term observations of vegetation seasonal
and interannual dynamics on a pixel-by-pixel basis. EVI is computed as,

EVI ¼ 2:5x
NIR−RED

NIRþ 6x RED‐7:5 x Blueþ 1
ð1Þ

where NIR and RED and Blue are atmospherically corrected surface re-
flectances in the near-infrared, red and blue wavebands, respectively.

The standard Terra MODIS 16-day composite EVI (MOD13A1) prod-
uct at 500 m spatial resolution for 2000 to 2014 was downloaded from
the NASA LP DAAC. This product has the strictest quality control (QC)
measures applied and is optimised to the nominal 16-day repeat orbital
cycle of the MODIS sensor (Didan, 2015). The EVI data was filtered
based on the quality assurance (QA) flags provided in the product and
gap filled using a linear method involving five chronologically arranged
datasets (Fensholt and Proud, 2012). Spatially averaged satellite EVI
time series data of the composite grass cover classes were compiled
by annuli and circles within the 100 km radius circles at each site (Fig.
3c, d).

2.5. Modelling of pollen concentrations

Generalised Additive Models (GAMs) (Hastie and Tibshirani, 1990;
James et al., 2013) were used to test the relationships and potential pre-
diction capabilities of grass pollinating periods with the seasonal EVI
profiles for all the study sites and grass cover sampling regimes (circle,
annuli). GAMs provide a conceptual modelling framework for extend-
ing a standard linear model by allowing non-linear functions of explan-
atory variables, while maintaining additivity (Hastie and Tibshirani,
1990; James et al., 2013). For predicting y using several predictors, x1,
x2…xp, GAMs can be represented as,

y ¼ b0þ f x1ð Þ þ f x2ð Þ þ f x3ð Þ þ f x4ð Þ ð2Þ

where, y is 14-daymoving average of daily grass pollen concentrations,
b0 is the intercept, x1 is 16 day-lagged EVI, x2 is 32 day-lagged EVI, x3 is
48 day-lagged EVI and x4 is the Julian day.

A 14-day moving average of daily grass pollen concentrations was
employed mainly to capture the seasonal variability of pollen concen-
tration. We used three time-lagged EVI data, or 48 days, and Julian day
as predictor variables. The pollen concentration on a specific day was
thus modelled using previous, lagged EVI observations, so that the
GAMmodels would have the potential to predict pollen concentrations,
weeks or even months ahead. In addition to the lagged EVI, Julian day
was also included as a predictor variable to capture the general season-
ality of pollen generation.
2.6. Model validation

Mean EVI time series data pertaining to the relevant grass cover
areas for each circle and annuli sample were generated and separate
GAMs were fitted for all the study locations. All EVI data corresponding
to available grass pollen data during years 2000–2013 were used for
training the GAM models. Prediction capabilities of the models were
evaluated with the correlation coefficient (r) between actual and pre-
dicted grass pollen concentration and the root mean square error
(RMSE). For validation of the prediction capabilities of the GAMs, actual
grass pollen concentration data for the most recent pollen season at
each site (2013–14 for the Australian sites; and 2014 for the French
sites) were used, i.e., this independent data year was not included in
the data to generate the GAMs. We used the entire 100 km sampling
area at each site to predict daily grass pollen levels for the independent
pollen season.

3. Results

3.1. Distribution of grass pollen sources (land cover analysis)

The functional composition of the IGBP land cover classes contrasted
distinctly between the Australian and French sites (Fig. 3a, b). Whereas
the French sites were relatively homogeneous with primarily herba-
ceous (grass and cereal crop) cover, the Australian sites (Melbourne
and Sydney) were distinctly heterogeneous in grass and forest vegeta-
tion. Substantial grass cover with potential to be emission sources of
grass pollen was found in all study areas. However, there were signifi-
cant differences in the proportions of the different land cover classes
across the five study sites (Fig. 3). Almost half (49%) of the total area
at the Melbourne site was comprised of grass-containing land cover
classes (composited groups 1–3), whereas the grass vegetated land
cover classes accounted for only 25% of the total area for Sydney. Grass-
land vegetation made up significant proportions of the total peri-urban
area for the French sites, with 88% (Amiens), 75% (Lyon), and 87%
(Montluçon).

Forests were primarily present in the peri-urban, N50 km annuli at
the Australian sites and in the outermost 76–100 km annulus in Lyon,
France. The surrounds of the Sydney site largely consisted of evergreen
broadleaf forests (Eucalyptus open forests) ranging from 25 to 75% of
total area across the annuli (Fig. 3c, d). Urban class area within the
100 km circle was substantially higher for the French sites (Amiens –
10%, Lyon – 19% and Montluçon – 16%) compared to Australian sites
(Melbourne – 6% and Sydney – 5%). The relative proportion of the
urban class within each annulus decreased with distance from the
trap in Melbourne, Lyon, and Montluçon, and was particularly high in
the 0–10 km annulus in Melbourne and Lyon (Fig. 3c). Actual area of
the urban class was highest near the pollen trap location in Melbourne
(11–25 km annulus), while in Sydney the maximum urban class area
occurred within the 25–50 km annulus, primarily a result of the pollen
trap location outside the centre of the city (Fig. 3d). Urban land class
area increased with distance from the pollen trap locations in Lyon,
Montluçon, and Amiens.

3.2. Comparison of EVI and grass pollen concentration time series data

The multiple year airborne grass pollen concentrations are plotted
alongside the satellite EVI time series data for the grass covered areas
at various distances (annuli) from the grass pollen sampler in Fig. 4. At
the French sites seasonal airborne pollen concentrations corresponded
well with satellite EVI data of the grass cover seasonal profiles, with
peak grass activity (greenness) and pollen concentrations occurring
during the warm late spring and early summer months (May–June)
and dormant grass (minimal greenness) with no airborne grass pollen
during the cold winter periods (January–February). Satellite-derived
grass cover greenness values varied only slightly across the various



Fig. 4. Time series plots of grass pollen concentrations and MODIS satellite EVI for the composite grass-containing land cover classes in each annuli for the French and Melbourne sites
(2002−2012) and Sydney (2008–2012) site. Note that grass pollen data for Melbourne is only available for a 3 months period (Oct–Dec).

Fig. 5. Stacked, multi-annual grass pollen concentration and satellite-derived EVI seasonality for the grass containing land cover classes within the 100 km composite circle at France and
Australian sites. Grass pollen concentration and EVI valueswere normalised (0–1) based on theirmaximumandminimumvalues. The year from July–Junewas used for Australia to centre
summer in both plots. Note that grass pollen data for Melbourne is only available for a 3 months period (Oct–Dec).
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annuli of increasing distance from the pollen sampler, with the excep-
tion of the highly urbanised area (0–10 km annulus) in Lyon, which
had much lower EVI values (Fig. 4). The small differences in satellite
EVI time series profiles across annuli reflected minor variations in the
extent of grass cover and their phenological timing (Fig. 3a, c).

In contrast, Melbourne exhibited more spatially variable grass cover
growth patterns with distance from the pollen sampler. Grass cover EVI
values and seasonality were strongest at the greatest distance annulus
(76–100 km) and decreased with proximity to the urban pollen sam-
pler, which showed low and seasonally weak EVI over the urbanised,
0–10 km annulus area (Fig. 4). The airborne grass pollen peak concen-
trations at the Melbourne site significantly lagged satellite EVI peaks
across all annuli, irrespective of the distance from the pollen sampler
(Fig. 4). The Sydney site showed more complex grass cover greening
and grass pollen concentration dynamics, with airborne grass pollen
concentrations and grass cover growth continuously active throughout
the year (Fig. 4), primarily as a result of the milder Sydney climate (Fig.
2). Secondary peaks in grass cover greenness and grass pollen concen-
trations were also observed (Fig. 4).

Normalised values of airborne grass pollen concentrations and satel-
lite EVI for all spatially distributed grass cover areas within the entire
100 km study area were stacked by individual year to compare pollen
with EVI phenological variations at each of the five sites (Fig. 5). The
French sites showed strong synchronous patterns in both grass pollen
concentration and EVI data with little inter-annual variability in either
the grass pollen or the EVI data. Spring season increases in grass pollen
concentrations were preceded by a sustained increase in EVI with peak
EVI values observed approximately 11, 19, and 21 days, on average, in
advance of peak grass pollen concentrations over Amiens, Lyon, and
Montluçon, respectively (Fig. 5).

The satellite EVI and grass pollen phenology profiles exhibitedmuch
stronger inter-annual variability at the Australian sites compared with
the French sites (Fig. 5). At the Melbourne site EVI peaks (typically Sep-
tember) were, on average, 52 days in advance of peak grass pollen con-
centrations in late Austral spring (November). The Sydney site also had
a strong pollen release period in November, but also showed a
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maximum grass pollen concentration.
secondary pollen period in Austral autumn (March) (Fig. 5). These bi-
modal peaks in grass pollen concentrations at the Sydney site
corresponded with bi-modal rainfall and EVI peaks (Fig. 2), although
the relative dominance and timing of spring and autumn EVI peaks var-
ied considerably from year to year, and in some years (e.g. 2010/11 and
2011/12), the two grass pollen periodsmerged, resulting in one contin-
uous grass pollen season extending from spring to autumn (Fig. 5). In
Sydney, the average Austral spring seasonal peak in grass pollen con-
centration (November) lagged behind satellite EVI peaks (October) by
30 days.

3.3. Modelling and prediction of pollen concentration in a GAM framework

The prediction capability of the general additivemodels (GAM) gen-
erally varied among sites and across annuli and composite circle areas
(Fig. 6 and Fig. 3a, b). The model prediction outcomes for the indepen-
dent grass pollen season test (2014 for France and 2013/14 for Austra-
lia) were far more accurate over the French sites compared with the
Australian sites, as shown by the higher correlation coefficients (r N
0.90, p-value b 0.001) and lower root mean square error (RMSE) (be-
tween 5 and 10%).

At the French sites, GAM-based predictive capabilities did not vary
markedly across individual annuli and composite area EVI sampling re-
gimes, indicative of the relatively homogeneous land cover conditions.
A slight increase in correlation coefficient and decrease in RMSE were
observed for Montluçon at samplings (annuli and area) beyond 25 km
from the pollen sampler. For the most part, EVI data from the broadly
distributed grass cover at the French sites (100 km radius study area)
yielded daily grass pollen predictions explaining between 80 and 90%
of the variance (p b 0.001) and the slowest RMSE, although at the
Amiens site, the highly local, 0–10 km circle yielded the lowest RMSE
values (Fig. 6).

At the Australian sites, a wider range of correlative predictions of the
grass pollen season (r increasing from 0.6 to 0.9) was found across the
annuli and composite sampling areas (Fig. 6). At the Melbourne site,
model predictions were more accurate beyond the 50 km annuli and
miens Lyon Montlucon
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composite study areas from the pollen sampler (p b 0.05), as grass cover
proportions increased with distance from the pollen sampler (Fig. 3c).
In the case of Sydney, the sampling annuli and circles explained 74%
to 79% of the variance (p b 0.05), with prediction accuracies highest in
the 0–25 km circle (r=0.87) and 11–25 km annuli (r=0.87) samples,
both with the lowest RMSE (7%). These sampling areas occurred be-
tween the relatively low urban cover location of the pollen sampler
and the highly urbanised inner Sydney city area 40 km away (Fig. 3a).
The next best GAM model result was when distributed grass cover
was sampled from the entire 100 km composite area (r = 0.83, Fig. 6).

The GAM-generated seasonal profile prediction of grass pollen con-
centrations for the independent pollen season is shown in Fig. 7 for dis-
tributed grass cover within the 100 km composite study area. The
predicted seasonal pollen profiles, peak timing and magnitudes, com-
pared well with actual grass pollen levels at all three French sites. In
contrast, the seasonal timing of pollen peaks and magnitudes of grass
pollen concentrations were less well predicted at the Australian sites.
At the Sydney site, predicted pollen peak timing lagged the actual
peak pollen by a few weeks, while at the Melbourne site predicted
peak pollen was one month in advance of the actual peak pollen period
(Fig. 7). At both sites, predicted pollen exceeded actual pollen levels
through most of the pollen season.

4. Discussion

This study exemplifies the potential for remote sensing imagery to
augment the geographic coverage and effectiveness of seasonal fore-
casts of grass pollen exposure in temperate regions to improve clinical
and patient self-management of allergic diseases. The satellite data con-
tributed both important geospatial landscape information on local and
regional grass pollen emission sources and the timing of key phenology
growth periods. Using grass pollen concentrations with Julian day and
three, 16-day lags of satellite greenness data in a GAM framework, we
were able to explain aerobiological pollen variations across the five
sites studied here, although with coefficients of determination that
were quiet variable, R2 ranging from 0.34 to 0.90. Seasonal pollen varia-
tions over the 3 sites in France showed clear phenology profiles and
were bestmodelledwith the satellite data (R2 from0.84 to 0.90). In con-
trast, satellite data only accounted for 34% and 78% of the seasonal var-
iation in pollen concentrations at the AustralianMelbourne and Sydney
sites, respectively, partly due to themore heterogeneous landscapemo-
saics, but also suggesting other explanatory variables (e.g. wind vector
data), not captured in the satellite EVI product, are needed to enable ef-
fectivemonthly andweekly predictivemodels for forecasting the timing
and magnitude of atmospheric grass pollen.

Satellite greenness monitoring revealed landscape process informa-
tion of grass cover phenology, a fundamental ecological plant trait that
integrates local climate, soils, land use, and disturbance factors
(Cleland et al., 2007; Richardson et al., 2013). Previous studies have
used satellite data to inventory grass pollen sources, as for example,
over the city of Aarhus, Denmark (Skjøth et al., 2013). In a UK study,
Khwarahm et al. (2017) used a total chlorophyll index from the MERIS
satellite, MTCI, to predict the onset of birch tree and grass flowering pe-
riods, which corresponded to the timing of pollen release. This study
was the first to attempt to compare Southern andNorthernHemisphere
sites and relate the phenology of Australian grassland dynamics with
grass seasonal pollen release activity. Using a globally consistent set of
satellite data, our results showed significant differences in the relation-
ships between grass cover satellite phenology and pollen release pe-
riods both within and across the French and Australian sites, with
seasonal pollen activity lagging behind seasonal satellite greenness
from 2 to 7 weeks over the studied sites.

Landscape conditions and climate may be partly responsible for the
contrasting results between the French and Australian sites. Land cover
types and grass species at the French siteswere relatively homogeneous
and uniformly distributed, resulting inwell-defined and sharp (narrow)
phenology profiles. The dominant plant species over the three French
sites included a major presence of agricultural crops (e.g., colza and
wheat) along with temperate grassland meadows and cultivated grass-
land fodder. Land cover conditions and grass cover phenology profiles at
the Australian sites were more heterogeneous and comprised diverse
grass species, yielding broader phenology profiles. In the Melbourne
site, grass diversity was dominated by temperate or spring-flowering
species (Davies et al., 2015), while in the Sydney region, grass cover
areas consist of native and exotic species, as well as the co-existence
of mixed temperate cool-season grasses (C3 species) and subtropical
or summer-flowering grasses (C4 species) (Davies et al., 2015; Medek
et al., 2016). It is likely that these functionally diverse grasses, each
with contrasting growth requirements, contributed to year-round
grass flowering andmultiple peaks of airborne grass pollen and satellite
greenness (Medek et al., 2016). Grass phenological diversity may also
partly explain the cross-site differences in observed lags between EVI
and the pollen concentration time series data.

Seasonal and inter-annual variability were also much greater at the
Australian sites compared with the sites in France. Beggs et al. (2015)
reported “striking spatial and temporal variability in grass pollen sea-
sons in Australia”, with important implications for the Australian grass
pollen-allergy community. Grasslands are among the most vulnerable
and ecologically sensitive biomes to climate variability and are particu-
larly susceptible to species invasions and shifts in species diversity
(Moran et al., 2014; Seddon et al., 2016). Notably, most allergenic
grass species are not endemic to Australia. Warm season C4 grasses
are expected to expand into cooler temperate areas with continued cli-
matewarming,which could be problematic, considering that current al-
lergen-specific immunotherapy treatments may not effectively cover
subtropical grass pollen allergens (Nony et al., 2015). Such inter-annual
variations will need to bemore thoroughly considered in the evaluation
of robust GAM model performance.
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We have demonstrated that land cover distribution and distance in-
fluence the relation of pollen emission sources with airborne grass pol-
len concentrations at target “sink” locations of interest (e.g., human
populated areas), particularly at the Australian sites with higher vegeta-
tion heterogeneity. This suggests land cover changes associated with
urban expansion and peri-urban land use activities induce changes in
pollen aerobiology by altering the location, amounts, and timing of
emission sources with potential climate interactions. Nevertheless, de-
spite the complex landscape conditions, this study has shown that sat-
ellite greenness data can function effectively in monitoring and tracing
grass pollen aerobiology. Given the highly dynamic nature of land
cover status and condition, remote sensing thus provides a powerful
public health tool because of its synoptic coverage andmonitoring capa-
bilities that can be used to augment predictive models of major
aeroallergen exposures within populated urban and surrounding areas.

Potential advances in pollen predictions can be made through im-
proved assessments of grass pollen emission source mapping, particu-
larly in diverse landscapes in which mixtures of vegetation functional
groupings (grass, shrub, tree) and species composition are poorly re-
solved and are not well represented in existing land cover classifica-
tions. The IGBP ‘built-up urban’ land cover class designation provides
no information on grass cover, yet urban ‘green spaces’ play a significant
role in grass pollen exposure to the public given the proximity factor
(Skjøth et al., 2013). Finer scale land cover maps would improve upon
the mapping of grass cover sources (e.g. parks, golf courses, lawns), al-
though they would be based on local or regional methods (e.g. Urban
Atlas), updated less frequently, and not globally consistent. Finer spatial
resolution Landsat and Sentinel-2 satellite data offer 10–30m pixel res-
olution, globally consistent data that can better resolve grass cover areas
and urban green spaces, and offer the potential of generatingmore pre-
cise and updated land cover maps (Chen et al., 2015).

Prior to implementation of satellite-based pollen forecasting, the op-
timal temporal frequency of satellite data may need to be investigated.
Standard MODIS vegetation index products and phenology products
are available at 16-day composited periods so that clouds can be effec-
tively masked and removed, atmosphere contaminants (e.g., aerosols)
minimised, and variations in sensor viewgeometries corrected for. Nev-
ertheless, reducing the window over which satellite data is sampled
would better define key phenophase periods and the lags between
peak EVI and peak pollen activity observed in this study over the differ-
ent locations. Thus, further studies are needed to assess whether higher
frequency satellite data, including daily data can improve upon phenol-
ogy parameter retrievals and forecasting of the pollen season.

The lower significance of the GAM's forMelbourne and Sydney high-
lights the need for further research to understand additional factors that
may be required to inform an accurate operational pollen forecast sys-
tem with truly synoptic coverage. In this cross-site modelling study,
we only assessed the prediction of a single spring pollen season (austral
spring in Australia), and did not attempt to predict multiple pollen sea-
sons, as seen with the smaller autumn pollen season at the Sydney site.
Thus, our GAMmodelmissed the second pollen peak in Sydney and this
may justify additional lags in the GAM model to capture multiple or
year-round flowering seasons. The contribution of other parameters
not captured in the satellite phenology signal, such as wind direction,
wind speed, temperature and vapour pressure deficit, to satellite-in-
formed pollen forecast models need to be further evaluated.

There are important meteorological influences and interactions that
must be considered in coupling satellite information on geo-locational
grass pollen sources with measured pollen concentrations at pollen
traps. At ourfive study sites,wind speedswere highest during the active
pollen season, an evolutionary adaptation of wind-pollinated grass spe-
cies that couple local site meteorological conditions with phenological
flowering states, and pollen concentrations in the atmosphere. Wind
vector data will further vary hourly and daily, and a pollen forecasting
model will need to ingest wind vector information to drive it at the
needed time scales.
At the two Australian coastal sites, wind speeds varied significantly
with time of day, with more intense wind speeds at 3 pm relative to
the calmer wind speeds at 9 am, year-round (Fig. 2). In Sydney, where
the grass pollen season was somewhat bimodal, wind speeds were
high for both pollen peaks, although slightly stronger during the domi-
nant austral spring pollen peak, compared with the weaker austral au-
tumn pollen peak. Afternoon sea breezes were also N50% stronger
than morning land breezes during both austral spring and autumn
grass pollen peaks, and only the land breezes would primarily contrib-
ute pollen to the atmosphere. In Melbourne the peakwind speeds coin-
cided with the start of the austral spring pollen season (Sep–Oct). In
contrast to Sydney, Melbourne morning land breezes persisted into
the afternoon, although sea breezes were equally significant in the
afternoon.

Thus, meteorological factors and influences on pollen were quite
varied even between the twoAustralian sites. By contrast, themore con-
tinental French sites were dominated by larger-scale synoptic condi-
tions and topographic effects. The role of meteorological factors thus
need further attention as contributory drivers for the cross-site variabil-
ity in pollen-satellite relationships observed in this study. If GAM-based
predictions are to be made across sites or if differences in GAM results
are to be explained within sites, then meteorological factors will have
to be included. Other factors to be considered, which may also not be
captured by the satellite greenness signal include, soil moisture, relative
humidity, and air temperatures.

A comprehensive or robust pollen forecasting model would require
better knowledge of pollen source sampling patterns. Pollen trap source
footprints and local to regional scale relationships do not appear to be
well understood for grasses. Grass pollen studies generally limit sam-
pling distances to within 50 km from the pollen trap, however, we
found some GAM prediction improvements when extending the sam-
pling to 100 km distances. Aylor et al. (2006) noted that the impact of
pollen may extend to greater distances because dispersal distributions
typically have long extending tails, especially for large source areas,
and the bi-weekly temporal scale of this study along with pollen re-
transport possibilities across multiple meteorologically-conducive
days may have enabled dispersal contributions from N50 km distances.
In summary, a better characterization of the pollen trap grass source
footprint is needed, weighted bywind and othermeteorological factors,
to improve upon grass pollen forecast models. If the potential of EVI to
inform pollen forecast systems were realised, then the significant re-
sources utilised for local labour-intensive pollen monitoring networks
could be substantially reduced.

5. Conclusions

The satellite EVI greenness signal used here encapsulates in a timely
fashion a range of environmental variables within the one phenology
measure, including the influence of local soil condition, land cover di-
versity, and meteorology on airborne pollen concentrations at weekly
scales. Nevertheless, daily operational and weekly predictive pollen
forecast models are likely to require integration of EVI data with mete-
orological data (e.g. wind) and to be validated by pollenmonitoring.We
provide herein evidence of the utility of remote sensing to contribute in-
formation on land cover and phenology conditions to advance the capa-
bility for short-term forecasting of peaks in the level and timing of
airborne grass pollen with wide synoptic coverage to assist in clinical
and public health management of the grass pollen allergen exposure
risks.
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